CYB 220-T01

Programming Project |

Professor Grech

Mikayla Hubbard

February 22, 2025

Table of Contents

Introduction ---------- 3
CYOAclass.py-------- 4
CYOAinstance.py — 10
Example ------------- 12
GitHub link ----------- 16

References ----------- 17

Introduction

The python programming project I have created is a Choose Your Own Adventure. This is based

on the program I began creating in Exercise 4. The end product looks very similar, except that I

used tkinter to render the GUI instead of easyGUI, and I moved the creation of the Choose Your

Own Adventure (CYOA) layout and functionality into its own class.

The program consists of 4-5 files:

1.

The CYOA class file

This sets up the tkinter frames and has methods to create different views and

functionalities.

The CYOA instance file

This creates and instance of the CYOA class, linking together different functions which
use the class’s methods to show different views. This is where the story is linked

together.

The refences file

A simple file with a list of reference links

The Azure folder and related files

These are included in the project folder in order to implement the Azure styling.

A text write-out file (optional/not created until program runs)

A text file is created when the program calls a certain method in the class and this file is

where the story it written out to.

Below I shall walk through the code in each python file:

CYOAclass.py

from tkinter import filedialog, ttk

import tkinter.font as tkFont

A imports, [used tkinter.ttk after some trial and error. Ttk ended up being used because it worked
with the style theme I implemented. Filedialog was imported to allow a user to create a file to

save the write-out to. tkFont was used for styling the text font.

tk.call('source', 'Azure/azure.tcl')
tk.call('set_theme', 'dark"')

s = ttk.Style()
headerFont = tkFont.Font(size=18, weight="bold", family="Times")
bodyFont = tkFont.Font(size=16, weight="normal", family="Times")

s.configure('TButton', font=('Times', 14))

geometry('800x400")

title("Choose Your Own Adventure!")

title = ttk.Label(root, font=self.headerFont)
title.pack(pady=10)

A this is the first part of the init .

__init__ takes the parameter root, which only works if the root you are adding is tk.Tk() (this is
done in the CYOAuinstance file, where ‘root = tk.Tk()’ and then it creates an instance of the class

with the parameter ‘root’

The theme section is where I am implementing the ttk Theme ‘Azure’. Linked is the GitHub
page where I downloaded the neccissary files for it. I followed the instructions of the GitHub

page to write the neccissary code to implement it and set it to the dark theme.

The styles section creates styles for the header, body text, and button. My main goal was to be
able to change the font and to make the text size bigger because it was hard to read. However, I
had difficulty getting the button styles to work. In order do accomplish this. I used ttk.Style() and

configured the button with that.

The next section of code sets up the tkinter window. It sets the size of the window and the title

of the window. Under this, we create a title label which is placed at the top of the window. We

will use self.title.config(text=) to change the title based on the current page in the story/program.

.storyFrame = ttk.Frame(root)

.storyFrame.columnconfigure(@, weight=2)
.storyFrame.columnconfigure(1l, weight=2)

.storyIntro = ttk.Label(self.storyFrame, wraplength=500, font=self.bodyFont, justify="left")
.story = ttk.Label(self.storyFrame, wraplength=500, font=self.bodyFont, justify="left")

.storyIntro.grid(row=0, column=0, columnspan=2, sticky='wens',padx=70, pady=5)
.story.grid(row=1, column=0, columnspan=2, sticky='wens',padx=70, pady=20)

.storyFrame.pack()

.buttonFrame = ttk.Frame(root)
.buttonFrame.columnconfigure(@, weight=1)
.buttonFrame.columnconfigure(1, weight=1)

.btn = ttk.Button(self.buttonFrame, padding=10, style='TButton')
.btn.grid(row=0, column=0, columnspan=2, sticky="wens", padx=20)

.btnl = ttk.Button(self.buttonFrame, padding=15, style='TButton')
.btnl.grid(row=0, column=0, sticky='wens', padx=20)

.btn2 = ttk.Button(self.buttonFrame, padding=15, style='TButton')
.btn2.grid(row=0, column=1, sticky='wens', padx=20)

.buttonFrame.pack()

.path = m,

~the rest of the init

Here we set up two frames in the window: the story frame and the button frame

Within the story frame, we create two columns. We then create two labels. One is for one
paragraph, and the other is for the second paragraph. Most of the time we only use the second
(self.story) paragraph, but when there is something like the introduction to the story, we write

something into the first paragraph (self.storyIntro). In each of the labels, we added styling like

the fonts we created earlier, justifying the text, and having it span both columns. We use grid to

place the paragraphs in thr grid and then pack the frame.

Next is the button frame. There are two columns, like the story frame. However, the buttons were
more difficult for me to configure. This is because some views require one button and others
require two buttons. I tried to do this many different ways, and this was one of the hardest parts
of the project. One way that was working (but had styling issues) was creating the buttons within
the different view’s methods. I had to clear the button frame between each switch between one
vs. two button screens, or the old buttons would still show up. However, I ended up ditching that
way of doing this, as creating the buttons in the _init made more sense organizationally and
helped me solve the styling issues. I will show the functions I am using to display the correct
buttons in a moment. Here, I create 3 button widgets, btn (for when there is only one button),
btnl, and btn2 (for when there are two buttons). Btn is put in the grid with a column span, and

the two other buttons are but in their respective columns. We then pack the button frame.

The last line in the _init contains a variable self.path with will hold the path that the user

chooses to write the file to.

Now, we will look at the methods in this class:

def oneButtonGrid(self):
self.btnl.grid_forget()
self.btn2.grid_forget()
self.btn.grid(row=0, column=0, columnspan=2, sticky="wens'", padx=20)

def twoButtonsGrid(self):
self.btn.grid_forget()
self.btnl.grid(row=0, column=0, sticky='wens', padx=20)
self.btn2.grid(row=0, column=1, sticky='wens', padx=20)

~ these two methods are used to set up the buttons and are called in their respective views. The
oneButtonGrid() uses grid forget on the buttons for the twoButtonsGrid to remove them from
view and places btn on the grid. The twoButtonsGrid forgets btn and adds btnl and btn2 to the

grid.

def newQuestionPage(self, titleText, storyText, optionl, option2, functionl, function2, storyIntroText="", write=False):
self.title.config(text=titleText)

if storyIntroText != ""
self.storyIntro.config(text=storyIntroText)
else:
self.storyIntro.config(text="")
self.story.config(text=storyText)

self.twoButtonsGrid()

self.btnl.config(text=optionl, command=lambda:functionl())
self.btn2.config(text=option2, command=1a a:function2())

if write:
if storyIntroText:
self.write(storyIntroText)
self.write(storyText)

A this method, the newQuestionPage method, creates a view with two buttons, with the needed
information in the parameters. There are a lot of parameters, but they are the necessary content
for creating a question page. This is the page in the CYOA that tells you part of the story and has
you decided which way to go. The user inputs the title, story, both option texts, and both
functions, which would point to the next pages of the story depending on which button the user
clicks. We then have the optional parameters: story intro, and write. Write, if set to True when
using the method will call the write method to write the storyText and the StoryIntroText to the

designated file (bottom of screenshot). I will discuss the write method later in this document.

The rest of this method adds the content inserted in the parameters into the proper labels/buttons.
Additionally, (before it sets the content of the buttons), it calls the twoButtonsgrid() to properly

set the button frame to have two available buttons.

def newContinuePage(self, titleText, storyText, buttonText, function, storyIntroText = "", write=False):

self.title.config(text=titleText)
if storyIntroText != "":
self.storyIntro.config(text=storyIntroText)
else:
self.storyIntro.config(text="")
self.story.config(text=storyText)

self.oneButtonGrid()
self.btn.config(text=buttonText, command=lambda:function())

if write:
if storyIntroText:
self.write(storyIntroText)
self.write(storyText)

~ this method, newContinuePage, is basically the same as the newQuestionPage, except that it
only has one option parameter (called buttonText) and one function, and it sets the grid to only

have one button.

open_file_dialog(self):

file_path = filedialog.asksaveasfilename(defaultextension=".txt", filetypes=[("Text files", "s.txt"), ("All files", "
self.path = file_path

return file_path

f write(self, storyString):
if self.path !=
try:
with open(self.path, 'a') as file:
file.write(f"{storyString}\n")
except FileNotFoundError:
print("ERROR")

" these are the final two methods in the class.

The open_file dialog method, uses filedialog to prompt the user to create a filename and this
returns the path to the local variable file path. We then change self.path to file path and also

return file path incase we want to use the filepath in the main program.

The write method takes a storyString as a paraments and checks that there is a filepath, it then
tries to open it (with append so as not to overwrite anything), and then write the storyString to

the file.

CYOAinstance.py

from CYOAclass import CYOA

import tkinter as tk

A The imports for this file are the class we created and tkinter

root = tk.Tk()
¢ = CYOA(root=root)

~ at the top of the file we create the root and create an instance of the class with this root.

intro()

root.mainloop()

" this is at the end of the class. It calls the first function in this file which starts of the list of

connected functions and it runs the root’s main loop.

10

11

ef start():
c.newQuestionPage("Save Story", "As you follow the story, we will be writing the results to a file. Please create a file to save your s
"Create File", "Quit", createFile, Quit)

ef createFile():
c.open_file_dialog()
drawbridge()

ef Quit():

c.newContinuePage("Byeeeeee", "Thank you for your time :)", "BYE", root.destroy)

ef intro():

c.newQuestionPage("Start Adventure","Hi! welcome the the choose your own adventure following the adventures of a deaf dog named Cooper!
“Start", "Quit", start, Quit)

ef end():
c.write("THE END")
c.newQuestionPage("THE END", "Thank you for playing! Would you like to start the story again?", "Start", "Quit", drawbridge, Quit)

~ these are the more organizational functions. Intro is what runs automatically, and it points to
either start or Quit, using the class’s newQuestionPage method to create the view. Start prompts
the user to create a file (or Quit), and the createfile calls the class’s open_file dialog method, and
once that is complete it point to drawbridge, the first page function in the CYOA. Quit used the
newContinuePage method as it’s view and when the user clicks the button it destroys the running
of the program. The last function in this screenshot is end, which is called from the last
page/function in a story (there are a couple different endings that call this), and it prompts the

user to either start the series again or Quit.

The rest of the functions in this file are similar. They each represent a different page of the
CYOA and use either the newContinuePage or newQuestionPage method from the class to create
their views, linking to the next page/function depending on which button the user clicks on. Each
function that contains a piece of the story uses write=True in the parameter list of the class

method they are calling in order to write their part of the story into the designated file. Below are

the story/page functions:

def

def

drawbridge():

c.newQuestionPage("Drawbridge", "cooper heads to the castle door, but the drawbridge is up! What does he do?",
"A. Use puppy eyes to get the guard to open the drawbridge", "B. bite through the rope to let down the bridge",puppyEyes,
"A long time ago in a kingdom far far away, there lived a dog named Cooper. Cooper had lived a good long life. Throoughou
write=True)

puppyEyes():
c.newQuestionPage("Puppy Eyes", "Cooper gives the guard on duty his best puppy-eyed stare. The guards melts, as they all do, and walks to
"A. snatch a piece of steak and run away", "B. Bite at the cooks heels", stealSteak, biteHeels, write=True)

biteRope():
c.newQuestionPage("Crossing the Drawbridge", "Cooper dashes forward and bites the rope in 2. The drawbridge opens and Cooper runs off to
“A. left", "B. right", left, right, write=True)

stealSteak():
c.newQuestionPage("Steak Theif", "While the cook is distracted, Cooper takes the opportunity to snatch a piece of steak and dart away as
"A. left", "B. right", hallwayLeft, hallwayRight, write=True)

biteHeels():
c.newQuestionPage("Biting", "Cooper begins biting at the cooks heels, which angers him even more. In a rage, the cook scoops up the littl
“A. left", "B. right", left, right, write=True)

hallwayLeft():
c.newQuestionPage("Dead End", "Cooper turns left. Alas! Dead end! In a rage, the cook scoops up the little dog and throws him out of the
"A. left", "B. right", left, right, write=True)

hallwayRight():
c.newContinuePage("King", "Cooper decides to go right, immidiately running into the kind-hearted king who is obsessed with him. He is pic

“THE END", end, write=True)

>f left():

c.newQuestionPage("Beach", "Cooper trots towards the beach, taking in the amaxing weather. As he reaches the beach, he also reaches a con
"A. play in the water", "B. dig in the sand", water, sand, write=True)

right(): > Find Aa ab, * No results
c.newQuestionPage("Dark Forest", "Cooper heads to where he imagines the most ad

"A. follow the singing", "B. stay on the path", singing, stay, write=True)

ef singing():

c.newContinuePage("Singing", "Did you foget that Cooper's deaf? He can't hear the singing, idiot.",
"Go Back", right)

stay():
c.newQuestionPage("Smells", "He trots along the path, then he smells sweets, he strays off the path following the smell. he comes across a
"A. towards the sweets", "B. towards the bacon", sweets, bacon, write=True)

sweets():
c.newContinuePage("Sweets","He follows the sweers, finding an old lady with a sinister smile, stirring a large potions. The door shut omino
"THE END", end, write=True)

bacon():
c.newContinuePage("Bacon", "following the scent of bacon, Cooper comes across a beshevled youngster along the side of the path. Excited to
"THE END", end, write=True)

f water():

c.newContinuePage("0Ocean", "excited, Cooper bounds to the water, splashing around, pretending to be a pirate lost at sea. However, Cooper s
“THE END", end, write=True)

f sand():

c.newQuestionPage("Digging"”, "As most dogs are inclined to do, Cooper excitedly starts digging a hole. He imagines he is a pirate digging f
“A. keep digging", "B. make a better hole somewhere else", treasure, dig, write=True)

treasure():
c.newContinuePage("Treasure", "Cooper keeps digging, hoping for the best. What he uncovers is a small metal chest full of gold and jewelry

"THE END", end, write=True)

dig():
c.newContinuePage("More Diggin", "Disgruntled at the unfortunate piece of metal occupying his perfectly good hole, Cooper moves a couple fe
"THE END", end, write=True)

Note: this is the exact same story I used in Exercise 4, just implemented differently.

Example of the Code Running

Choose Your Own Adventure!

Start Adventure

Hi! welcome the the choose your own adventure following the adventures of
a deaf dog named Cooper! Would you like to start?

Quit

Choose Your Own Adventure!

Save Story

As you follow the story, we will be writing the results to a file. Please create a
file to save your story to :)

Create File

Save |
Save As: | test
Tags:
Where: [7] programmingProject1 v

Format: Text files (.txt)

13

Drawbridge

A long time ago in a kingdom far far away, there lived a dog named Cooper.
Cooper had lived a good long life. Throughout the years he had seen kings
and kingdoms rise and fall. He had tasted the wares of many a palace cook
(with and without their permission), and, unfortunately, he had also lost his
hearing. However, Cooper longed for adventure, and as the days went by, he
decided it was time to take matters intohis own paws. And so, Cooper left the
safety of the castle, setting out for adventure.

Cooper heads to the castle door, but the drawbridge is up! What does he do?

A. Use puppy eyes to get the guard to open the drawbridge B. bite through the rope to let down the bridge

[] Choose Your Own Adventure!

Crossing the Drawbridge

Cooper dashes forward and bites the rope in two. The drawbridge opens, and
Cooper runs off to his new adventure. To the left is a path leading to the
beach, and to the right is a path going into a dark forest. Which way does
Cooper go?

’ B. right ‘

[] Choose Your Own Adventure!

Dark Forest

Cooper heads to where he imagines the most adventure to be: the dark forest.
As he trots along, there is isinging in the distance. What does he do?

A. follow the singing B. stay on the path

14

Choose Your Own Adventure!

Did you foget that Cooper's deaf? He can't hear the singing, idiot.

Go Back

Choose Your Own Adventure!

Dark Forest

Cooper heads to where he imagines the most adventure to be: the dark forest.

As he trots along, there is isinging in the distance. What does he do?

A. follow the singing B. stay on the path

15

16

[] [) Choose Your Own Adventure!

He trots along the path, then he smells sweets, and he strays off the path
following the smell. he comes across a clearnig and finds a cottage with
smoke floating out of the chimney. He stops, confused. There are 2 smells.
The first is the smell of sweets, coming from the cozy cottage. The second
smell is that of bacon, coming from further on down the path. Which does he
go to?

A. towards the sweets B. towards the bacon ‘

[] ® Choose Your Own Adventure!

Following the scent of bacon, Cooper comes across a beshevled youngster
along the side of the path. Excited to have a new furry friend, the boy lures
copper over with a freshly made piece of bacon. Cooper inhales the bacon,
and the child recruits the adventurous old dog into a life of adventure and
crime. Cooper has befriended a young vigilante and lives out the rest of his
days being fed bacon and assisting in various schemes

GitHub Link

https://github.com/mikaylahubbard/CYB220/tree/65498a0641bb93db773e5eb6¢cc567ca53c56a4bl

e/programmingProjectl

Note: I couldn’t figure out a good way to include the Azure folder. I zipped it and put it in the
GitHub folder, so you can download the folder from there. You could also get the Azure files

from it’s GitHub at https://github.com/rdbende/Azure-ttk-theme

https://github.com/mikaylahubbard/CYB220/tree/65498a064fbb93db773e5e6cc567ca53c56a4b1e/programmingProject1
https://github.com/mikaylahubbard/CYB220/tree/65498a064fbb93db773e5e6cc567ca53c56a4b1e/programmingProject1
https://github.com/rdbende/Azure-ttk-theme

17

References

https://stackoverflow.com/questions/76932493/tkinter-using-buttons-to-progress-a-text-
adventure-game

https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-

pack-method/

https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-

wrapped-text-that-fills-the-width-of-the-win

https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-

on-one-side
https://tkdocs.com/tutorial/grid.html
https://www.youtube.com/watch?v=mop6g-cSHEY

https://python-forum.io/thread-26250.html

https://www.reddit.com/r/Python/comments/lps11c/how to make tkinter look modern
how to use themes/
https://github.com/rdbende/Azure-ttk-theme

https://www.geeksforgeeks.org/tkinter-fonts/

https://www.youtube.com/watch?v=9¢lj Xrx7f{CM
https://www.geeksforgeeks.org/how-to-hide-recover-and-delete-tkinter-widgets/
https://www.geeksforgeeks.org/python-forget pack-and-forget grid-method-in-tkinter/
Mikayla Hubbard's Exercise 4 part 2 (included in the ‘no longer in use’ folder)

CYB 220 resources (mostly slides)

https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-pack-method/
https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-pack-method/
https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-wrapped-text-that-fills-the-width-of-the-win
https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-wrapped-text-that-fills-the-width-of-the-win
https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-on-one-side
https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-on-one-side
https://python-forum.io/thread-26250.html
https://www.geeksforgeeks.org/tkinter-fonts/

