
 1

CYB 220-T01

Programming Project I

Professor Grech

Mikayla Hubbard

February 22, 2025

 2

Table of Contents

• Introduction ---------- 3

• CYOAclass.py-------- 4

• CYOAinstance.py – 10

• Example ------------- 12

• GitHub link -----------16

• References ----------- 17

 3

Introduction

The python programming project I have created is a Choose Your Own Adventure. This is based

on the program I began creating in Exercise 4. The end product looks very similar, except that I

used tkinter to render the GUI instead of easyGUI, and I moved the creation of the Choose Your

Own Adventure (CYOA) layout and functionality into its own class.

The program consists of 4-5 files:

1. The CYOA class file

This sets up the tkinter frames and has methods to create different views and

functionalities.

2. The CYOA instance file

This creates and instance of the CYOA class, linking together different functions which

use the class’s methods to show different views. This is where the story is linked

together.

3. The refences file

A simple file with a list of reference links

4. The Azure folder and related files

These are included in the project folder in order to implement the Azure styling.

5. A text write-out file (optional/not created until program runs)

 4

A text file is created when the program calls a certain method in the class and this file is

where the story it written out to.

Below I shall walk through the code in each python file:

CYOAclass.py

^ imports, I used tkinter.ttk after some trial and error. Ttk ended up being used because it worked

with the style theme I implemented. Filedialog was imported to allow a user to create a file to

save the write-out to. tkFont was used for styling the text font.

 5

^ this is the first part of the __init__.

__init__ takes the parameter root, which only works if the root you are adding is tk.Tk() (this is

done in the CYOAinstance file, where ‘root = tk.Tk()’ and then it creates an instance of the class

with the parameter ‘root’

The theme section is where I am implementing the ttk Theme ‘Azure’. Linked is the GitHub

page where I downloaded the neccissary files for it. I followed the instructions of the GitHub

page to write the neccissary code to implement it and set it to the dark theme.

The styles section creates styles for the header, body text, and button. My main goal was to be

able to change the font and to make the text size bigger because it was hard to read. However, I

had difficulty getting the button styles to work. In order do accomplish this. I used ttk.Style() and

configured the button with that.

The next section of code sets up the tkinter window. It sets the size of the window and the title

of the window. Under this, we create a title label which is placed at the top of the window. We

 6

will use self.title.config(text=) to change the title based on the current page in the story/program.

^ the rest of the __init__

Here we set up two frames in the window: the story frame and the button frame

Within the story frame, we create two columns. We then create two labels. One is for one

paragraph, and the other is for the second paragraph. Most of the time we only use the second

(self.story) paragraph, but when there is something like the introduction to the story, we write

something into the first paragraph (self.storyIntro). In each of the labels, we added styling like

 7

the fonts we created earlier, justifying the text, and having it span both columns. We use grid to

place the paragraphs in thr grid and then pack the frame.

Next is the button frame. There are two columns, like the story frame. However, the buttons were

more difficult for me to configure. This is because some views require one button and others

require two buttons. I tried to do this many different ways, and this was one of the hardest parts

of the project. One way that was working (but had styling issues) was creating the buttons within

the different view’s methods. I had to clear the button frame between each switch between one

vs. two button screens, or the old buttons would still show up. However, I ended up ditching that

way of doing this, as creating the buttons in the __init__ made more sense organizationally and

helped me solve the styling issues. I will show the functions I am using to display the correct

buttons in a moment. Here, I create 3 button widgets, btn (for when there is only one button),

btn1, and btn2 (for when there are two buttons). Btn is put in the grid with a column span, and

the two other buttons are but in their respective columns. We then pack the button frame.

The last line in the __init__ contains a variable self.path with will hold the path that the user

chooses to write the file to.

Now, we will look at the methods in this class:

 8

^ these two methods are used to set up the buttons and are called in their respective views. The

oneButtonGrid() uses grid_forget on the buttons for the twoButtonsGrid to remove them from

view and places btn on the grid. The twoButtonsGrid forgets btn and adds btn1 and btn2 to the

grid.

^ this method, the newQuestionPage method, creates a view with two buttons, with the needed

information in the parameters. There are a lot of parameters, but they are the necessary content

for creating a question page. This is the page in the CYOA that tells you part of the story and has

you decided which way to go. The user inputs the title, story, both option texts, and both

functions, which would point to the next pages of the story depending on which button the user

clicks. We then have the optional parameters: story intro, and write. Write, if set to True when

using the method will call the write method to write the storyText and the StoryIntroText to the

designated file (bottom of screenshot). I will discuss the write method later in this document.

The rest of this method adds the content inserted in the parameters into the proper labels/buttons.

Additionally, (before it sets the content of the buttons), it calls the twoButtonsgrid() to properly

set the button frame to have two available buttons.

 9

^ this method, newContinuePage, is basically the same as the newQuestionPage, except that it

only has one option parameter (called buttonText) and one function, and it sets the grid to only

have one button.

^ these are the final two methods in the class.

The open_file_dialog method, uses filedialog to prompt the user to create a filename and this

returns the path to the local variable file_path. We then change self.path to file_path and also

return file_path incase we want to use the filepath in the main program.

 10

The write method takes a storyString as a paraments and checks that there is a filepath, it then

tries to open it (with append so as not to overwrite anything), and then write the storyString to

the file.

CYOAinstance.py

^ The imports for this file are the class we created and tkinter

^ at the top of the file we create the root and create an instance of the class with this root.

^ this is at the end of the class. It calls the first function in this file which starts of the list of

connected functions and it runs the root’s main loop.

 11

^ these are the more organizational functions. Intro is what runs automatically, and it points to

either start or Quit, using the class’s newQuestionPage method to create the view. Start prompts

the user to create a file (or Quit), and the createfile calls the class’s open_file_dialog method, and

once that is complete it point to drawbridge, the first page function in the CYOA. Quit used the

newContinuePage method as it’s view and when the user clicks the button it destroys the running

of the program. The last function in this screenshot is end, which is called from the last

page/function in a story (there are a couple different endings that call this), and it prompts the

user to either start the series again or Quit.

The rest of the functions in this file are similar. They each represent a different page of the

CYOA and use either the newContinuePage or newQuestionPage method from the class to create

their views, linking to the next page/function depending on which button the user clicks on. Each

function that contains a piece of the story uses write=True in the parameter list of the class

method they are calling in order to write their part of the story into the designated file. Below are

 12

the story/page functions:

Note: this is the exact same story I used in Exercise 4, just implemented differently.

 13

Example of the Code Running

 14

 15

 16

GitHub Link

https://github.com/mikaylahubbard/CYB220/tree/65498a064fbb93db773e5e6cc567ca53c56a4b1

e/programmingProject1

Note: I couldn’t figure out a good way to include the Azure folder. I zipped it and put it in the

GitHub folder, so you can download the folder from there. You could also get the Azure files

from it’s GitHub at https://github.com/rdbende/Azure-ttk-theme

https://github.com/mikaylahubbard/CYB220/tree/65498a064fbb93db773e5e6cc567ca53c56a4b1e/programmingProject1
https://github.com/mikaylahubbard/CYB220/tree/65498a064fbb93db773e5e6cc567ca53c56a4b1e/programmingProject1
https://github.com/rdbende/Azure-ttk-theme

 17

References

- https://stackoverflow.com/questions/76932493/tkinter-using-buttons-to-progress-a-text-

adventure-game

- https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-

pack-method/

- https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-

wrapped-text-that-fills-the-width-of-the-win

- https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-

on-one-side

- https://tkdocs.com/tutorial/grid.html

- https://www.youtube.com/watch?v=mop6g-c5HEY

- https://python-forum.io/thread-26250.html

- https://www.reddit.com/r/Python/comments/lps11c/how_to_make_tkinter_look_modern_

how_to_use_themes/

- https://github.com/rdbende/Azure-ttk-theme

- https://www.geeksforgeeks.org/tkinter-fonts/

- https://www.youtube.com/watch?v=9eljXrx7fCM

- https://www.geeksforgeeks.org/how-to-hide-recover-and-delete-tkinter-widgets/

- https://www.geeksforgeeks.org/python-forget_pack-and-forget_grid-method-in-tkinter/

- Mikayla Hubbard's Exercise 4 part 2 (included in the ‘no longer in use’ folder)

- CYB 220 resources (mostly slides)

https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-pack-method/
https://www.geeksforgeeks.org/difference-between-fill-and-expand-options-for-tkinter-pack-method/
https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-wrapped-text-that-fills-the-width-of-the-win
https://stackoverflow.com/questions/11949391/how-do-i-use-tkinter-to-create-line-wrapped-text-that-fills-the-width-of-the-win
https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-on-one-side
https://stackoverflow.com/questions/4174575/adding-padding-to-a-tkinter-widget-only-on-one-side
https://python-forum.io/thread-26250.html
https://www.geeksforgeeks.org/tkinter-fonts/

